COURSE STRUCTURE CLASS -X

UNIT I: NUMBER SYSTEMS

1. REAL NUMBER

Fundamental Theorem of Arithmetic - statements after reviewing work done earlier and after illustrating and motivating through examples, Proofs of irrationality of $\sqrt{2}\sqrt{3}\sqrt{5}$ Decimal representation of rational numbers interms of terminating/non-terminating recurring decimals.

UNIT II: ALGEBRA

1. POLYNOMIALS

Zeros of a polynomial. Relationship between zeros and coefficients of quadratic polynomials.

2. PAIR OF LINEAR EQUATIONS IN TWO VARIABLES (11) Periods

Pair of linear equations in two variables and graphical method of their solution, consistency/inconsistency.

Algebraic conditions for number of solutions. Solution of a pair of linear equations in two variables algebraically - by substitution, by elimination. Simple situational problems. Simple problems on equations reducible to linear equations.

3. QUADRATIC EQUATIONS

Standard form of a quadratic equation $ax^2 + bx + c = 0$, $(a \neq 0)$. Solutions of quadratic equations (only real roots) by factorization, and by using guadratic formula. Relationship between discriminant and nature of roots.

4. **ARITHMETIC PROGRESSIONS**

Motivation for studying Arithmetic Progression Derivation of the nth term and sum of the first n terms of A.P.

Units Unit Name Marks NUMBER SYSTEMS 06 Т Ш ALGEBRA 20 Ш COORDINATE GEOMETRY 06 IV GEOMETRY 15 v TRIGONOMETRY 12 VI MENSURATION 10 VII **STATISTICS & PROBABILTY** 11 Total 80

(8) Periods

(4) Periods

(10) Periods

(4) Periods

8

UNIT III: COORDINATE GEOMETRY

1. LINES (In two-dimensions)

Review: Concepts of coordinate geometry, graphs of linear equations. Distance formula. Section formula (internal division).

UNIT IV: GEOMETRY

1. TRIANGLES

Definitions, examples, counter examples of similar triangles.

- 1. (Prove) If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
- 2. (Motivate) If a line divides two sides of a triangle in the same ratio, the line is parallel to the third side.
- 3. (Motivate) If in two triangles, the corresponding angles are equal, their corresponding sides are proportional and the triangles are similar.
- 4. (Motivate) If the corresponding sides of two triangles are proportional, their corresponding angles are equal and the two triangles are similar.
- 5. (Motivate) If one angle of a triangle is equal to one angle of another triangle and the sides including these angles are proportional, the two triangles are similar.
- 6. (Motivate) If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse, the triangles on each side of the perpendicular are similar to the whole triangle and to each other.
- 7. (Prove) In a right triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

2. CIRCLES

Tangent to a circle at, point of contact

- 1. (Prove) The tangent at any point of a circle is perpendicular to the radius through the point of contact.
- 2. (Prove) The lengths of tangents drawn from an external point to a circle are equal.

(10) Periods

(10) Periods

(8) Periods

3. **CONSTRUCTIONS**

- 1. Division of a line segment in a given ratio (internally).
- 2. Tangents to a circle from a point outside it.

UNIT V: TRIGONOMETRY

INTRODUCTION TO TRIGONOMETRY 1.

Trigonometric ratios of an acute angle of a right-angled triangle. Proof of their existence (well defined). Values of the trigonometric ratios of 30^{0} , 45^{0} and 60^{0} . Relationships between the ratios.

2. TRIGONOMETRIC IDENTITIES

Proof and applications of the identity $sin^2A + cos^2A = 1$. Only simple identities to be given.

3. HEIGHTS AND DISTANCES: Angle of elevation, Angle of Depression. (8) Periods

Simple problems on heights and distances. Problems should not involve more than two right triangles. Angles of elevation / depression should be only 30° , 45° , 60° .

UNIT VI: MENSURATION

1. **AREAS RELATED TO CIRCLES**

Motivate the area of a circle; area of sectors and segments of a circle. Problems based on areas and perimeter / circumference of the above said plane figures. (In calculating area of segment of a circle, problems should be restricted to central angle of 60° and 90° only. Plane figures involving triangles, simple quadrilaterals and circle should be taken.)

2. SURFACE AREAS AND VOLUMES

- 1. Surface areas and volumes of combinations of any two of the following: cubes, cuboids, spheres, hemispheres and right circular cylinders/cones.
- 2. Problems involving converting one type of metallic solid into another and other mixed problems. (Problems with combination of not more than two different solids be taken).

UNIT VII: STATISTICS AND PROBABILITY

STATISTICS 1.

Mean, median and mode of grouped data (bimodal situation and step deviation method for finding the mean to be avoided).

2. PROBABILITY

Classical definition of probability. Simple problems on finding the probability of an event.

(8) Periods

(10) Periods

(10) Periods

(8) Periods

(4) Periods

(10) Periods

(10) Periods